
International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 1
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

An Efficient Parallel Approach for

Frequent Itemset Mining of Incremental Data
Mrs. Chetashri Bhadane, Dr. Ketan Shah, Mrs. Prajakta Vispute

Abstract - Frequent itemset mining is the essential step of data mining process. Further frequent itemset is a primary data obligatory for

association rule mining. The Apriori and FP tree are conventional algorithms for mining frequent itemset and envisaging assoc iation rules

based on it for knowledge discovery. The process of updating database continuously is known as incremental data mining. In real life,

database updates recurrently where exactly conventional algorithms perform incompetently. If w e could use the previous analys is to

incrementally mine the frequent itemset from the updated database, the mining process would become more eff icient and cost of mining

process would be minimized. In this research, we propose a novel incremental mining scheme w ith a parallel approach for discovering

frequent itemset. It uses a data structure called IMBT. It is a Incremental Mining Binary Tree which is used to record the itemset in an

eff icient way. Furthermore, our approach needs not to predetermine the minimum support threshold and scans the database only once.

Index Terms - Apriori , FUFP Algorithms, FP Tree Algorithm, Frequent Itemset, IMBT Structure, Incremental Data Mining, Parallel Data

Mining,.

—————————— ——————————

1 INTRODUCTION

Data mining [1] is one of the fastest growing fields in the
computer industry. The data base system industry has an
evolutionary path in the development of the functionalities
like Data collection and database creation, data
management and advanced data analysis which includes
Data mining and data warehousing. Among the various
data mining applications, mining association rules is an
important one. The strategies for mining frequent itemset,
which is the essential part of discovering association rules,
have been widely studied over the last decade such as the
Apriori, and FPgrowth. In the traditional frequent itemset
mining algorithms, a strict definition of support is used for
every item in a frequent itemset occurring in each
supporting transaction.
However, in real-world applications, new transactions are
usually inserted into databases. However, most mining
methods did not involve in dynamic of data, that is, with
time running, the algorithms can‘t effectively deal with the
data set including new data and the old data, and even the
future data, which may be important for theoretical
analysis and practical application, for which the concept of
Incremental data mining [3][4][6][7] is introduced.

1.1 Need of Incremental Mining

In real-world applications, transaction databases usually
grow over time and the association rules mined from them
must be re-evaluated. Some new association rules may be
generated and some old ones may become invalid.
Conventional batch-mining algorithms solve this problem by
reprocessing the entire new databases when new
transactions are inserted into original databases. They,
however, require lots of computational time and waste
existing mined knowledge.

The Apriori algorithm in which candidate itemsets are

generated and tested level-by-level, may cause iterative
database scans and high computational costs. The Frequent-
Pattern-tree (FP-tree) structure for efficiently mining
association rules without generation of candidate itemset
was used to compress a database into a tree structure which
stored only large items. Both the Apriori and the FP-tree
mining approaches belong to batch mining.

In real-world applications, new transactions are usually
inserted into databases incrementally. In this case, the
originally desired large itemset may become invalid, or new
large itemset may appear in the resulting updated databases.
The solution to batch mining algorithms such as Apriori and
FP-tree is incremental mining algorithms. Incremental
mining provides the solution to this problem. Incremental
data mining tries to use the previous results as the basis to
incrementally mine the database with new transactions.

There are two performance issues on incremental data
mining. The first one is the need to rescan the original
database to enumerate the support count of the patterns
when a database is updated. The second issue is how to deal
with the threshold changes during the lifetime of the
database.

2 RELATED WORK

At present there are many elegant and practical data
mining algorithms, models and technologies present. These
methods have good performances and practical
perspectives for static data discovering association rules,
decision tree classification algorithms etc.

Several methods exist for frequent itemset mining. The
most traditional method is Apriori algorithm which uses
the lexicographic tree [6] to record the itemset generates
level-wise candidates and rescans the database to
enumerate the support count of each itemset and finds
frequent itemsets. Han et al. [8] proposed the FP-growth

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 2
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

algorithm using FP-tree data structure. FP-tree takes the
advantage of common paths to record the sorted frequent
items in transactions. In addition, FP-growth uses a header
table to record the frequent items and point to the node in
the FP-tree to improve the performance of mining frequent
itemsets.

Hong et al. [7] proposed the FUFP algorithm for
incremental mining. The algorithm is based on the FPtree
structure that can be used to mine frequent itemsets without
candidate generation. FUFP needs to rescan the original
database in some cases when an infrequent itemset
becomes frequent or the threshold is changed. However, if
the database is large the FP-tree will be large and the space
requirement for recursion is a also huge [12]. As a result,
Lin and Hong et al. [9] proposed the Pre-FUFP algorithm to
improve the performance over FUFP. Pre-FUFP sets two
thresholds and records the pre-large itemsets, which can
potentially become frequent itemsets when new
transactions are added. Although the Pre-FUFP algorithm
decreases the probability of rescanning the original
database, the size of the original database still affects the
cost when the database is updated. Further, C. H. Yang and
D. L. Yang proposed IMBT (Incremental Mining Binary
Tree) data structure for mining frequent itemsets more
efficiently. One of the feature of this mining method using
IMBT is, it do not entail minimum support threshold at the
beginning of mining process which is mandatory in
traditional mining methods.

3 EXISTING TECHNIQUES FOR INCREMENTAL MINING

3.1 Incremental Mining Method using IMBT

To make use of already mined result, C. H. Yang and D. L.
Yang, proposed mining method using new tree structure
rather than FPtree. It uses a tree structure called IMBT
(Incremental Mining Binary Tree) to enumerate the support
count of each itemset in an efficient way after the
transactions are added or deleted. Instead of rescanning the
database many times to enumerate the support count of the
itemsets after the database update, it processes a
transaction at a time and record the possible itemsets in a
data structure that can reduce the processing and IO time.

3.2 IMBT - Incremental Mining Binary Tree

Here we will see how IMBT creation from given dataset.
Consider a transaction I = {1, 2, 3, 4} for which IMBT is
created as in Fig.1 and Fig.2 shows its simplified IMBT tree
[6].

Fig 1. The IMBT tree

Fig 2. The simplif ied IMBT tree

For simplicity, we use the numeric number to represent the
item. The root is an empty node to hold the pointer of the
first tree node where it stores the smallest 1-itemset
encountered so far. Additional left or right child is added
according to the items contained in a transaction. The
construction of the IMBT tree is complete after the last

transaction has been processed.

3.3 Adding transactions into Database

First using original database as given in Table 1, construct
the IMBT as discussed above. An addition database DB+
containing the transactions to be added to the original ODB
database shown in table 2. There are four items (0, 6, 7, 8) in
the first transaction (Tid 001). In this case, we will insert
new nodes and increase the support count of one existing

itemset. The final IMBT [6] is as shown in figure 3.

Table 1
The original database ODB

 TID Items

 001 4, 5, 7

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 3
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Table 2
 Addition Database DB+

TID Items

 001 0, 6, 7, 8

 002 0, 5, 7

Fig 3: The IMBT after completing the process of all
 transactions in the database DB+

The advantage of this mining method is that it is not
needed to rescan the original database after new
transactions are added. Therefore, no matter what the
original database is, the size of the database, or the length
of the transaction, there is no effect on mining the database
incrementally after the updates. Moreover, the cost of
updating the IMBT is minimal since we do not scan the

whole IMBT for node updates.

3.4 Mining frequent itemsets after the database
update

Given an itemset X, if SupDB(X) is larger than or equal to
the minimum support (min_sup) determined by users, the
itemset X is called a frequent itemset. If an itemset X is
infrequent, the left-side descendants of the itemset X are
infrequent, and thus the algorithm will stop traversing the
left-side descendants. This can improve the performance of
mining process. When the database is updated (added or
deleted), the FI-table also needs to be updated
incrementally. After constructing the IMBT, we will
traverse the tree to discover the frequent itemsets based on
the minimum support specified by users. The mining
results are kept in a FI-table for further reference. Since no
support threshold is required during the tree construction,
users can mine the frequent itemsets with any threshold
before or after the database update.

The method using IMBT mines the newly added
transactions by reusing the mined results from the original
database and performance has been greatly improved. But
this method faces the problem of limited memory space
when IMBT gets processed in the main memory. IMBT
structure can get too large to fit into main memory. When
this occurs the process either dies or must start using virtual
memory. Since the databases to be mined are incremental in
nature and often very large (measured in gigabytes and even
terabytes), applying parallel mechanism to the existing serial
mining algorithms would be an attentive measure in data
mining field.

4 PROBLEM DEFINITION

As the data sizes increase, from gigabytes to terabytes or
even larger, sequential data mining algorithms may not
deliver results in a reasonable amount of time. Even worse,
as a single processor alone may not have enough main
memory to hold all the data, a lot of sequential algorithms
could not handle large scale problems or have to process
data out of core, further slowing down the process. In
parallel environment, by exploiting the vast aggregate main
memory and processing power of parallel processors,
parallel algorithms can have both the execution time and
memory requirement issues well addressed [10].

5 PROPOSED SYSTEM

To overcome this problem of limited memory space, a
novel method is suggested in this paper which uses parallel
approach for counting frequent itemsets using IMBT data
structure. The main objective of this research is to
parallelize IMBT creation and frequent itemsets counting,
to be run on multiple machines at high speed when
memory and processor limitations would make it
impractical to run the algorithm on a single machine. Our
research work mainly focuses on how this parallelism can
be achieved efficiently without significant communication
and processing overhead.

5.1 Design

Initially the input file will be divided into separate
‗chunks‘. Then parallelism will be applied to each chuck of
input file. As this method will use basic data structure
IMBT and will be for incremental mining, it will not use
any minimum support threshold for IMBT tree creation.
Once local IMBT will be created on separate nodes,
frequency count of each itemsets will be counted on
individual nodes. The generated frequent itemsets will be
merged together to generate a super-set of the actual
frequent itemsets in the dataset as a whole. Finally,
minimum support threshold specified by user will be
applied to super-set of all itemsets for counting frequent
itemsets. The intuitive designing of the proposed approach

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 4
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

is given in following figure 4. For implementation of this
approach Map Reduce Framework is an appropriate
solution.

Fig 4.Parallel IMBT tree creation & frequent itemset counting

5.2 MapReduce Architecture

MapReduce is standard software architecture, developed
by Google, which aids in the design and execution of large
scale data processing tasks. There are two primary
components to the architecture: MAP and REDUCE. The
MAP step takes in a chunk of input data and emits key-
value pairs which represent that data. In the word count
example below the keys are the text of each word, and the
value is a count (one). The reduce step received key-value
pairs in which all identical keys are guaranteed to arrive at
the same reduce function. In the word-count example the
reduce function simply sums the values for each key and
outputs the key with a total count. The output from all

reduce steps is appended to an output file.

5.3 Methods for Parallelism

When it comes to the parallel computation techniques, data
has to distribute among different nodes. Data Parallelism
and Task Parallelism are two approaches using which data
distribution task can be accomplished. Each one of these
methods specifies their data distribution policy and based
on it, node‘s work format. Data parallelism focuses on
distributing the data across different parallel computing
nodes. In data parallelism each processor performs the
same task on different pieces of distributed data.
 For our research work data parallelism will be a good
choice. As real life dataset used to be large, keeping it on

each node will need more memory space. ‗Database
Sharding‘ is the one method to achieve proper data
distribution on different node. Database sharding breaks
down large datasets into smaller chunks called ―shards‖

and spreads those across a number of different systems.

6 CONCLUSION

In this paper we have discussed the traditional data mining
techniques such as Apriori, FP Tree, and FP growth.
Although these techniques give the efficient performance,
they cannot handle the real world dynamic data. So the
incremental mining technique FUFP (Fast Updated
Frequent Pattern) is proposed which uses basic data
structure FP tree again. However, if the database is large
the FP-tree will be large and the space requirement for
recursion is also very huge. Also it still needs to rescan the
original database in some cases when an infrequent itemset
becomes frequent or the threshold is changed. As a solution
to this rescanning problem an incremental mining
technique using IMBT is proposed to enumerate the
support count of each itemset in an efficient way after the
new transactions are added or deleted. Since no support
threshold is required during the tree construction, this
method allows users to mine the frequent itemsets with any
threshold before or after the database update. Method
using IMBT mines the newly added transactions by reusing

International Journal of Scientific & Engineering Research, Volume 3, Issue 2, February -2012 5
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

the mined results from the original database and
performance has been greatly improved. But this method
faces the problem of limited memory space when IMBT
gets processed in the main memory. IMBT structure can get
too large to fit into main memory.

 So we have proposed a novel method in which database
will be distributed among different nodes and local IMBT
will be created using which frequent itemsets will be
counted incrementally. Intuitively we can say that this
method will be more efficient than existing non-parallel
incremental methods such as Apriori and FPtree methods.

REFERENCES

[1] Chen, M. S., Han, J., & Yu, P. S. ―Data mining: An overview

from a database perspective‖, IEEE Transactions on Knowledge

and Data Engineering,‖ 8(6), 866–883,1996

[2] J. Han, J. Pei, Y. Yin, ―Mining Frequent Itemsets without

Candidate Generation,‖ ACM SIGMOD International

Conference on Management of Data, 2000.

[3] D. W. Cheung, J. Han, V. T. Ng, C. Y. Wong, ―Maintenance of

discovered association rules in large databases: An incremental

updating approach,‖ In The twelfth IEEE international

conference on data engineering, pp. 106–114, 1996

[4] C. W. Lin, T. P. Hong, W. H. Lu, ―The Pre - FUFP algorithm for

incremental mining,‖ Expert Systems with Applications, 2008

[5] C. I. Ezeife, Y. Su, ―Mining incremental association rules with

generalized FP-tree,‖ In Proceedings of the 15th conference of

the Canadian society, pp.147–160, 2002

[6] C. H. Yang and D. L. Yang, ‖IMBT-A Binary Tree for Efficient

Support Counting of Incremental Data Mining,‖ 2009

International Conference on Computational Science &

Engineering

[7] T. P. Hong, C. Y. Wang and Y. H. Tao, "A new incremental data

mining algorithm using pre-large itemsets," Intelligent Data

Analysis, Vol. 5, No. 2, 2001, pp. 111-129.Fghh

[8] Gosta Grahne, Member, IEEE, and Jianfei Zhu, Student Member,

"Fast Algorithms for Frequent Itemset Mining Using FP-Trees,"

IEEE Transactions On Knowledge And Data Engineering, Vol.

17, No. 10, October 2005 1347.F

[9] Rakesh Agrawal and John C. Shafer, ―Parallel mining of

association rules,‖ IEEE Trans. On Knowledge and Data

Engineering, 8(6):962-969, December 1996.

[10] Jianwei Li, Ying Liu, Wei-keng Liao, Alok Choudhary, ―Parallel

Data Mining Algorithms for Association Rule and Clustering,‖

2006 by CRC Press, LLC

[11] Frequent Patterns without Candidate Generation: A Frequent-

Pattern Tree Approach,‖ Data Mining and Knowledge

Discovery, 8, 53–87, 2004

[12] Jian Pei, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang,

Dongqing Yang, ―H-Mine: Fast and space-preserving frequent

pattern mining in large databases,‖ Data Mining and

Knowledge Discovery, 8, 53-87, 2004

